Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.067
Filtrar
1.
Genes (Basel) ; 15(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540440

RESUMO

BACKGROUND: Left ventricular hypertrophy (LVH) is a well-recognized cardiac dysfunction in infants of mothers with gestational diabetes mellitus (GDM). Left ventricular noncompaction (LVNC) is a cardiomyopathy that is morphologically characterized by numerous prominent trabeculations and deep intertrabecular recesses on cardiovascular imaging. However, there have been no case reports on neonates of mothers with GDM showing LVH and LVNC. CASE PRESENTATION: A patient, with LVH of a mother with GDM, was delivered at 36 weeks of gestation. Prominent trabeculations in the LV, suggesting LVNC, instead of LVH, were apparent 1 week after birth. A heterozygous deletion variant in the MYH7 gene (NM_000257.4: c.1090T>C, p.Phe364Leu) was discovered through genetic testing using a cardiomyopathy-associated gene panel in the patient and his father and the older brother who had LVNC. The patient is now 5 years old and does not have major cardiac events, although LVNC persisted. This is the first case of LVH secondary to a mother with GDM and LVNC with a novel variant in the MYH7 gene. CONCLUSION: Genetic testing should be conducted to obtain an accurate outcome and medical care in a patient with LVH and subsequently prominent hypertrabeculation in the LV.


Assuntos
Cardiomiopatias , Diabetes Gestacional , Cardiopatias Congênitas , Masculino , Lactente , Recém-Nascido , Feminino , Gravidez , Humanos , Pré-Escolar , Diabetes Gestacional/genética , Mães , Hipertrofia Ventricular Esquerda/genética , Cardiopatias Congênitas/genética , Cardiomiopatias/genética , Cadeias Pesadas de Miosina/genética , Miosinas Cardíacas/genética
2.
FASEB J ; 38(6): e23505, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507255

RESUMO

Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of ß-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of ß-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.


Assuntos
Estenose da Valva Aórtica , Cardiomiopatia Hipertrófica , Humanos , Receptores Ativados por Proliferador de Peroxissomo , Cardiomiopatia Hipertrófica/genética , Hipertrofia Ventricular Esquerda/genética , Estenose da Valva Aórtica/genética , Ácidos Graxos/metabolismo
3.
ESC Heart Fail ; 11(1): 299-305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984882

RESUMO

AIMS: Observational studies have suggested that anaemia is associated with an increased risk of heart failure (HF). But the potential causal association is not clear. We aimed to investigate the association between anaemia and HF risk. METHODS AND RESULTS: A Mendelian randomization (MR) analysis was performed to confirm the causal association of anaemia with the risk of HF and left ventricular structure and function. Furthermore, a reverse-direction MR analyses was conducted to assess the causal effect of HF on anaemia. The MR analysis indicated that genetically predicted anaemia is associated with the increased risk of HF (meta: odd ratio (OR) = 1.12; 95% confidence interval (CI) [1.04, 1.20]; P = 0.002), and left ventricular mass index (ß = 1.051; 95% CI [0.384, 1.718]; P = 0.002), left ventricular mass (ß = 2.063; 95% CI [0.578, 3.547]; P = 0.006), left atrial minimum volume (ß = 0.076; 95% CI [0.008, 0.143]; P = 0.028), and left atrial maximum volume (ß = 0.090; 95% CI [0.023, 0.157]; P = 0.009). In the reverse-direction MR analyses, we found that genetic susceptibility to HF was significantly associated with the increased risk of anaemia (meta: OR = 1.40; 95% CI [1.24, 1.59]; P = 1.79 × 10-7 ). CONCLUSIONS: This MR study supports the genetic evidence that there is bidirectional causality between anaemia and the risk of HF as well as anaemia may cause left ventricular hypertrophy and enlargement of the left atrium. Considering the adverse causal effects between the two diseases, more attention should be paid to the prevention and treatment of anaemia in patients with HF.


Assuntos
Anemia , Insuficiência Cardíaca , Humanos , Função Ventricular Esquerda , Análise da Randomização Mendeliana , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/genética , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/genética , Anemia/complicações , Anemia/epidemiologia , Anemia/genética
4.
Wiad Lek ; 76(9): 2054-2060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37898944

RESUMO

OBJECTIVE: The aim: To study the association of left ventricular hypertrophy (LVH) and polymorphisms rs1801253 and rs1801252 of the ADRB1 gene with the risk of sudden cardiac death (SCD). PATIENTS AND METHODS: Materials and methods: The study included 179 patients which underwent clinical investigation, echocardiography, elektrokardiography. The examined were divided into groups with a low (110 people) and high risk (69 people) of SCD. The distribution of allelic polymorphisms was investigated with polymerase chain reaction (PCR). RESULTS: Results: All patients of group with high-risk cardiovascular mortality showed a decrease in heart rate variability (RV) due to an increase in sympathetic activity (p=0.013). Also, in the group of patients with LVH, predictors of sudden cardiac death and arrhythmogenic substrate, were observed. The variability of the allele C1165G rs1801253 of the ADRB1 gene was associated with an increased risk (2.55-fold increase) of SCD and LVH. Also, the associations of polymorphic locus A145G (rs1801252) of the ADRB1 gene proved the presence of a permanent difference for the "risky" allele A in patients with a high risk of SCD. CONCLUSION: Conclusions: It was set the probable association of alleles rs1801253 (C1165G) and rs1801252 (A145G) ADRB1 at the patients with a high risk of SCD compared to the control group.


Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Humanos , Alelos , Hipertrofia Ventricular Esquerda/genética , Hipertensão/complicações , Hipertensão/genética , Polimorfismo Genético , Morte Súbita Cardíaca/etiologia , Fatores de Risco , Receptores Adrenérgicos beta 1/genética
5.
Am J Cardiol ; 206: 247-253, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714095

RESUMO

Extracting and accurately phenotyping electronic health documentation is critical for medical research and clinical care. We sought to develop a highly accurate and open-source natural language processing (NLP) module to ascertain and phenotype left ventricular hypertrophy (LVH) and hypertrophic cardiomyopathy (HCM) diagnoses from echocardiogram reports within a diverse hospital network. After the initial development on 17,250 echocardiogram reports, 700 unique reports from 6 hospitals were randomly selected from data repositories within the Mass General Brigham healthcare system and manually adjudicated by physicians for 10 subtypes of LVH and diagnoses of HCM. Using an open-source NLP system, the module was formally tested on 300 training set reports and validated on 400 reports. The sensitivity, specificity, positive predictive value, and negative predictive value were calculated to assess the discriminative accuracy of the NLP module. The NLP demonstrated robust performance across the 10 LVH subtypes, with the overall sensitivity and specificity exceeding 96%. In addition, the NLP module demonstrated excellent performance in detecting HCM diagnoses, with sensitivity and specificity exceeding 93%. In conclusion, we designed a highly accurate NLP module to determine the presence of LVH and HCM on echocardiogram reports. Our work demonstrates the feasibility and accuracy of NLP to detect diagnoses on imaging reports, even when described in free text. This module has been placed in the public domain to advance research, trial recruitment, and population health management for patients with LVH-associated conditions.


Assuntos
Cardiomiopatia Hipertrófica , Hipertrofia Ventricular Esquerda , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/genética , Processamento de Linguagem Natural , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Ecocardiografia/métodos , Sensibilidade e Especificidade
6.
BMC Cardiovasc Disord ; 23(1): 464, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715114

RESUMO

BACKGROUND: Mitochondrial myopathies (MMs) are a group of multi-system diseases caused by abnormalities in mitochondrial DNA (mtDNA) or mutations of nuclear DNA (nDNA). The diagnosis of mitochondrial myopathy (MM) is reliant on the combination of history and physical examination, muscle biopsy, histochemical studies, and next-generation sequencing. Patients with MMs have diverse clinical manifestations. In the contemporary literature, there is a paucity of reports on cardiac structure and function in this rare disease. We report a Chinese man with MM accompanied with both acute right heart failure and left ventricular hypertrophy. CASE PRESENTATION: A 49-year-old man presented with clinical features suggestive of MM, i.e., ophthalmoparesis, weakness of the pharyngeal and extremity muscles, and respiratory muscles which gradually progressed to respiratory insufficiency. He had a family history of mitochondrial myopathy. He had increased levels of serum creatine kinase and lactate. Muscle biopsy of left lateral thigh revealed 8% ragged red fibers (RRF) and 42% COX-negative fibers. Gene sequencing revealed a novel heterozygote TK2 variant (NM_001172644: c.584T>C, p.Leu195Pro) and another heterozygous variant (NM_004614.4:c.156+958G>A; rs1965661603) in the intron of TK2 gene. Based on these findings, we diagnosed the patient as a case of MM. Echocardiography revealed right heart enlargement, pulmonary hypertension, left ventricular hypertrophy, and thickening of the main pulmonary artery and its branches. The patient received non-invasive ventilation and coenzyme Q10 (CoQ10). The cardiac structure and function were restored at 1-month follow-up. CONCLUSIONS: This is the first report of reversible cardiac function impairment and left ventricular hypertrophy in a case of adult-onset MM, nocturnal hypoxia is a potential mechanism for left ventricular hypertrophy in patients with MM.


Assuntos
Hipertrofia Ventricular Esquerda , Miopatias Mitocondriais , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/genética , População do Leste Asiático , Coração , Miopatias Mitocondriais/complicações , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Cardiomegalia
7.
Mol Med ; 29(1): 107, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558995

RESUMO

BACKGROUND: A dysfunction of NADH dehydrogenase, the mitochondrial Complex I (CI), associated with the development of left ventricular hypertrophy (LVH) in previous experimental studies. A deficiency of Ndufc2 (subunit of CI) impairs CI activity causing severe mitochondrial dysfunction. The T allele at NDUFC2/rs11237379 variant associates with reduced gene expression and impaired mitochondrial function. The present study tested the association of both NDUFC2/rs11237379 and NDUFC2/rs641836 variants with LVH in hypertensive patients. In vitro studies explored the impact of reduced Ndufc2 expression in isolated cardiomyocytes. METHODS: Two-hundred-forty-six subjects (147 male, 59.7%), with a mean age of 59 ± 15 years, were included for the genetic association analysis. Ndufc2 silencing was performed in both H9c2 and rat primary cardiomyocytes to explore the hypertrophy development and the underlying signaling pathway. RESULTS: The TT genotype at NDUFC2/rs11237379 associated with significantly reduced gene expression. Multivariate analysis revealed that patients carrying this genotype showed significant differences for septal thickness (p = 0.07), posterior wall thickness (p = 0.008), RWT (p = 0.021), LV mass/BSA (p = 0.03), compared to subjects carrying either CC or CT genotypes. Patients carrying the A allele at NDUFC2/rs641836 showed significant differences for septal thickness (p = 0.017), posterior wall thickness (p = 0.011), LV mass (p = 0.003), LV mass/BSA (p = 0.002) and LV mass/height2.7(p = 0.010) after adjustment for covariates. In-vitro, the Ndufc2 deficiency-dependent mitochondrial dysfunction caused cardiomyocyte hypertrophy, pointing to SIRT3-AMPK-AKT-MnSOD as a major underlying signaling pathway. CONCLUSIONS: We demonstrated for the first time a significant association of NDUFC2 variants with LVH in human hypertension and highlight a key role of Ndufc2 deficiency-dependent CI mitochondrial dysfunction on increased susceptibility to cardiac hypertrophy development.


Assuntos
Cardiomegalia , Hipertensão , Humanos , Masculino , Ratos , Animais , Adulto , Pessoa de Meia-Idade , Idoso , Cardiomegalia/genética , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/complicações , Hipertensão/complicações , Hipertensão/genética , Genótipo , Transdução de Sinais , Complexo I de Transporte de Elétrons/genética
9.
ESC Heart Fail ; 10(4): 2711-2717, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271167

RESUMO

Hypertrophic cardiomyopathy (HCM), a genetically and clinically heterogeneous cardiomyopathy, is commonly caused by mutations in the MYBPC3 gene or other various sarcomeric genes. HCM patients carrying sarcomeric gene mutations may experience an asymptomatic period at early stage but still possess an escalating risk of developing adverse cardiac events including sudden cardiac death. It is crucial to determine the phenotypic and pathogenic effects of mutations in sarcomeric genes. In this study, a 65-year-old male was admitted with a history of chest pain, dyspnoea, and syncope and with a family history of HCM and sudden cardiac death. On admission, electrocardiogram indicated atrial fibrillation and myocardial infarction. Transthoracic echocardiography revealed left ventricular concentric hypertrophy and systolic dysfunction (48%), which were ascertained by cardiovascular magnetic resonance. With late gadolinium-enhancement imaging, cardiovascular magnetic resonance found myocardial fibrosis on left ventricular wall. The exercise stress echocardiography test showed non-obstructive myocardial changes. Whole-exome sequencing analysis identified a MYBPC3 gene heterozygous nonsense variant (c.1522C>T) in the patient and one of his healthy grandnieces (18-year-old). The patient was diagnosed with non-obstructive HCM, heart failure, atrial fibrillation, and so on. Medications, ICD implantation, and catheter ablation were chosen to maintain heart function. Our study provides the clinical evidence regarding the HCM pathogenicity of MYBPC3 c.1522C>T variant and highlights the significance of family genetic testing in the diagnosis and management of HCM.


Assuntos
Fibrilação Atrial , Cardiomiopatia Hipertrófica , Masculino , Humanos , Idoso , Adolescente , Códon sem Sentido , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/genética , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Miocárdio , Hipertrofia Ventricular Esquerda/genética , Morte Súbita Cardíaca/etiologia
10.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 831-841, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37232575

RESUMO

Systemic and pulmonary arterial hypertension (PAH) can induce left and right ventricular hypertrophy, respectively, but common therapeutic targets for both left and right hypertrophy are limited. In this study, we attempt to explore potential common therapeutic targets and screen out potential target drugs for further study. Cardiac mRNA expression profiles in mice with transverse aortic constriction (TAC) and pulmonary arterial constriction (PAC) are obtained from online databases. After bioinformatics analyses, we generate TAC and PAC mouse models to validate the phenotypes of cardiac remodelling as well as the identified hub genes. Bioinformatics analyses show that there are 214 independent differentially expressed genes (DEGs) in GSE136308 (TAC related) and 2607 independent DEGs in GSE30922 (PAC related), while 547 shared DEGs are associated with the function of the extracellular matrix (ECM) or involved in the PI3K-Akt signaling pathway, cytokine-cytokine receptor interactions, and ECM-receptor interactions. We identifyd Fn1, Il6, Col1a1, Igf1, Col1a2, Timp1, Col3a1, Cd44, Ctgf and Postn as hub genes of the shared DEGs, and most of them are associated with myocardial fibrosis. Those hub genes and phenotypes of cardiac remodelling are validated in our TAC and PAC mouse models. Furthermore, we identify dehydroisoandrosterone (DHEA), iloprost and 4,5-dianilinophthalimide (DAPH) as potential therapeutic drugs targeting both left and right ventricular hypertrophy and validate the effect of DHEA. These findings suggest that DHEA could be an effective drug for pressure overload-induced left or right ventricular hypertrophy by regulating the shared hub differentially expressed genes associated with fibrosis.


Assuntos
Hipertrofia Ventricular Esquerda , Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Direita/genética , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/genética , Remodelação Ventricular , Fosfatidilinositol 3-Quinases , Cardiomegalia , Biologia Computacional , Desidroepiandrosterona , Fibrose , Camundongos Endogâmicos C57BL
11.
Am J Med Genet C Semin Med Genet ; 193(2): 160-166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36734411

RESUMO

Gain of function pathogenic variants in MRAS have been found in a small subset of pediatric subjects presenting with Noonan syndrome (NS) associated with hypertrophic cardiomyopathy (HCM) and moderate to severe intellectual disability. These variants are considered to confer a high-risk for the development of severe HCM with poor prognosis and fatal outcome. We report on the natural history of the first adult subject with NS carrying the recurrent pathogenic p.Thr68Ile amino acid substitution. Different from what had previously been observed, he presented with a mild, late-onset left ventricular hypertrophy, and a constellation of additional symptoms rarely seen in NS. The present case provides evidence that HCM does not represent an obligatory, early-onset and severe complication in subjects with MRAS variants. It also adds new data about late-onset features suggesting that other unexpected complications might be observed in adult subjects providing anticipatory guidance for individuals of all age.


Assuntos
Cardiomiopatia Hipertrófica , Síndrome de Noonan , Masculino , Criança , Humanos , Adulto , Síndrome de Noonan/complicações , Síndrome de Noonan/genética , Síndrome de Noonan/diagnóstico , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/complicações , Cardiomiopatia Hipertrófica/genética , Substituição de Aminoácidos , Mutação , Fenótipo , Proteínas ras/genética
12.
Circ Genom Precis Med ; 16(1): e003716, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36598836

RESUMO

BACKGROUND: Left ventricular maximum wall thickness (LVMWT) is an important biomarker of left ventricular hypertrophy and provides diagnostic and prognostic information in hypertrophic cardiomyopathy (HCM). Limited information is available on the genetic determinants of LVMWT. METHODS: We performed a genome-wide association study of LVMWT measured from the cardiovascular magnetic resonance examinations of 42 176 European individuals. We evaluated the genetic relationship between LVMWT and HCM by performing pairwise analysis using the data from the Hypertrophic Cardiomyopathy Registry in which the controls were randomly selected from UK Biobank individuals not included in the cardiovascular magnetic resonance sub-study. RESULTS: Twenty-one genetic loci were discovered at P<5×10-8. Several novel candidate genes were identified including PROX1, PXN, and PTK2, with known functional roles in myocardial growth and sarcomere organization. The LVMWT genetic risk score is predictive of HCM in the Hypertrophic Cardiomyopathy Registry (odds ratio per SD: 1.18 [95% CI, 1.13-1.23]) with pairwise analyses demonstrating a moderate genetic correlation (rg=0.53) and substantial loci overlap (19/21). CONCLUSIONS: Our findings provide novel insights into the genetic underpinning of LVMWT and highlight its shared genetic background with HCM, supporting future endeavours to elucidate the genetic etiology of HCM.


Assuntos
Cardiomiopatia Hipertrófica , Hipertrofia Ventricular Esquerda , Humanos , Bancos de Espécimes Biológicos , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Estudo de Associação Genômica Ampla , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/genética , Reino Unido
13.
BMC Cardiovasc Disord ; 22(1): 571, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577936

RESUMO

BACKGROUND: AT1 receptor gene (AGTR1) is related to essential hypertension (EH), and left ventricular hypertrophy (LVH) and arterial stiffness are common complications of EH. This study aimed to explore the association between AGTR1 genotype and LVH and arterial stiffness in EH patients. METHODS: A total of 179 EH patients were recruited in this study. Oral exfoliated cells were collected from each patient, and the genetic polymorphism of AGTR1(rs4524238) was assessed using a gene sequencing platform. The outcomes were LVH and arterial stiffness. RESULTS: Among 179 patients, 114 were with AGTR1 genotype of GG (57 males, aged 59.54 ± 13.49 years) and 65 were with AGTR1 genotype of GA or AA (36 males, aged 61.28 ± 12.79 years). Patients with AGTR1 genotype of GG were more likely to have LVH (47 [41.23%] vs. 14 [21.54%], P = 0.006) and arterial stiffness (30 [26.32%] vs. 8 [12.31%], P = 0.036). The AGTR1 polymorphism frequency was in accordance with Hardy-Weinberg equilibrium (P = 0.291). The multivariate logistic regression showed that AGTR1 genotype of GA or AA was independently associated with lower risk of LVH (OR = 0.344, 95%CI 160~0.696, P = 0.003) and arterial stiffness (OR = 0.371, 95%CI 0.155~0.885, P = 0.025) after adjusting for gender, age, and diabetes. CONCLUSION: EH patients with the AGTR1 genotype of GA or AA were at lower risk for LVH and arterial stiffness than those with the GG genotype.


Assuntos
Hipertensão , Rigidez Vascular , Masculino , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/genética , Receptor Tipo 1 de Angiotensina/genética , Hipertensão/diagnóstico , Hipertensão/genética , Hipertensão/complicações , Estudos Prospectivos , Rigidez Vascular/genética , Polimorfismo Genético , Hipertensão Essencial/diagnóstico , Hipertensão Essencial/genética , Hipertensão Essencial/complicações , Genótipo
14.
J Am Heart Assoc ; 11(24): e027363, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36515236

RESUMO

Background Cardiomegaly caused by left ventricular hypertrophy is a risk factor for development of congestive heart failure, classically associated with decreased systolic and/or diastolic ventricular function. Less attention has been given to the phenotype of left ventricular hypertrophy with enhanced ventricular function and increased cardiac output, which is potentially associated with high-output heart failure. Lack of recognition may pose diagnostic ambiguity and management complexities. Methods and Results We sought to systematically characterize high-output cardiac hypertrophy in subjects with Cantu syndrome (CS), caused by gain-of-function variants in ABCC9, which encodes cardiovascular KATP (ATP-sensitive potassium) channel subunits. We studied the cardiovascular phenotype longitudinally in 31 subjects with CS with confirmed ABCC9 variants (median [interquartile range] age 8 years [3-32 years], body mass index 19.9 [16.5-22.9], 16 male subjects). Subjects with CS presented with significant left ventricular hypertrophy (left ventricular mass index 86.7 [57.7-103.0] g/m2 in CS, n=30; 26.6 [24.1-32.8] g/m2 in controls, n=17; P<0.0001) and low blood pressure (systolic 94.5 [90-103] mm Hg in CS, n=17; 109 [98-115] mm Hg in controls, n=17; P=0.0301; diastolic 60 [56-66] mm Hg in CS, n=17; 69 [65-72] mm Hg in control, n=17; P=0.0063). Most (21/31) subjects with CS exhibited eccentric hypertrophy with normal left ventricular wall thickness. Congestive heart failure symptoms were evident in 4 of the 5 subjects with CS aged >40 years on long-term follow-up. Conclusions The data define the natural history of high-output cardiac hypertrophy resulting from decreased systemic vascular resistance in subjects with CS, a defining population for long-term consequences of high-output hypertrophy caused by low systemic vascular resistance, and the potential for progression to high-output heart failure.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Hipertricose , Hipertrofia Ventricular Esquerda , Osteocondrodisplasias , Humanos , Masculino , Trifosfato de Adenosina , Cardiomegalia/genética , Insuficiência Cardíaca/complicações , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/complicações , Canais KATP , Fenótipo , Resistência Vascular , Feminino , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Osteocondrodisplasias/genética , Hipertricose/genética
15.
Genes (Basel) ; 13(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36292585

RESUMO

Left ventricular (LV) hypertrophy (LVH) is an independent risk factor for cardiovascular disease, and African Americans experience a disparate high risk of LVH. Genetic studies have identified potential candidate genes and variants related to the condition. Epigenetic modifications may continue to help unravel disease mechanisms. We used methylation and echocardiography data from 636 African Americans selected from the Hypertension Genetic Epidemiology Network (HyperGEN) to identify differentially methylated regions (DMRs) associated with LVH. DNA extracted from whole blood was assayed on Illumina Methyl450 arrays. We fit linear mixed models to examine associations between co-methylated regions and LV traits, and we then conducted single CpG analyses within significant DMRs. We identified associations between DMRs and ejection fraction (XKR6), LV internal diastolic dimension (TRAK1), LV mass index (GSE1, RPS15 A, PSMD7), and relative wall thickness (DNHD1). In single CpG analysis, CpG sites annotated to TRAK1 and DNHD1 were significant. These CpGs were not associated with LV traits in replication cohorts but the direction of effect for DNHD1 was consistent across cohorts. Of note, DNHD1, GSE1, and PSMD7 may contribute to cardiac structural function. Future studies should evaluate relationships between regional DNA methylation patterns and the development of LVH.


Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/complicações , Negro ou Afro-Americano/genética , Epidemiologia Molecular , Hipertensão/genética , DNA
16.
Mol Genet Metab ; 137(1-2): 179-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36088815

RESUMO

Fabry disease is an X-linked inherited metabolic disorder due to the pathogenic mutation of the GLA gene, which codes lysosomal enzyme alpha-galactosidase A. The resultant accumulation of glycosphingolipids causes various systemic symptoms in childhood and adolescence, and major organ damage in adulthood. Cardiac involvement is important as the most frequent cause of death in Fabry disease patients. Progressive left ventricular hypertrophy with varying degrees of contractile dysfunction as well as conduction abnormalities and arrhythmias are typical cardiac features, and these findings can be evaluated in detail via non-invasive modalities, such as an electrocardiogram, echocardiography and cardiac magnetic resonance. In addition, specific therapies of enzyme replacement therapy and pharmacological chaperone therapy are available, and their beneficial effects on cardiac involvement have been reported. This minireview highlights recent evidence concerning non-invasive modalities for assessing cardiac involvement in Fabry disease and the effects of enzyme replacement therapy and pharmacological chaperone therapy on the findings of those modalities.


Assuntos
Doença de Fabry , Adolescente , Humanos , Adulto , Doença de Fabry/complicações , Doença de Fabry/diagnóstico , Doença de Fabry/tratamento farmacológico , alfa-Galactosidase/genética , alfa-Galactosidase/uso terapêutico , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/genética , Terapia de Reposição de Enzimas/efeitos adversos , Glicoesfingolipídeos
17.
J Am Heart Assoc ; 11(15): e026071, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35904190

RESUMO

Heart failure with preserved ejection fraction (HFpEF) remains a medical anomaly that baffles researchers and physicians alike. The overall phenotypical changes of diastolic function and left ventricular hypertrophy observed in HFpEF are definable; however, the metabolic and molecular alterations that ultimately produce these changes are not well established. Comorbidities such as obesity, hypertension, and diabetes, as well as general aging, play crucial roles in its development and progression. Various animal models have recently been developed to better understand the pathophysiological and metabolic developments in HFpEF and to illuminate novel avenues for pharmacotherapy. These models include multi-hit rodents and feline aortic constriction animals. Recently, genomic, proteomic, and metabolomic approaches have been used to define altered signaling pathways in the heart associated with HFpEF, including those involved in inflammation, cGMP-related, Ca2+ handling, mitochondrial respiration, and the unfolded protein response in endoplasmic reticulum stress. This article aims to present an overview of what has been learnt by these studies, focusing mainly on the findings in common while highlighting unresolved issues. The knowledge gained from these research models will not simply be of benefit for treating HFpEF but will undoubtedly provide new insights into the mechanisms by which the heart deals with external stresses and how the processes involved can fail.


Assuntos
Insuficiência Cardíaca , Animais , Gatos , Insuficiência Cardíaca/tratamento farmacológico , Hipertrofia Ventricular Esquerda/genética , Camundongos , Modelos Animais , Proteômica , Ratos , Volume Sistólico/fisiologia
18.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216380

RESUMO

Left ventricular hypertrophy (LVH) is a major risk factor for adverse cardiovascular events. Recently, a novel candidate gene encoding the carboxypeptidase X member 2 (CPXM2) was found to be associated with hypertension-induced LVH. CPXM2 belongs to the M14 family of metallocarboxypeptidases, yet it lacks detectable enzyme activity, and its function remains unknown. Here, we investigated the impact of micro (mi)RNA-29b, miRNA-195, and miRNA-497 on the posttranscriptional expression control of CPXM2. Candidate miRNAs for CPXM2 expression control were identified in silico. CPXM2 expression in rat cardiomyocytes (H9C2) was characterized via real-time PCR, Western blotting, and immunofluorescence. Direct miRNA/target mRNA interaction was analysed by dual luciferase assay. CPXM2 was expressed in H9C2 and co-localised with z-disc associated protein PDZ and LIM domain 3 (Pdlim3). Transfection of H9C2 with miRNA-29b, miRNA-195, and miRNA-497 led to decreased levels of CPXM2 mRNA and protein, respectively. Results of dual luciferase assays revealed that miRNA-29b and miRNA-497, but not miRNA-195, directly regulated CPXM2 expression on a posttranscriptional level via binding to the 3'UTR of CPXM2 mRNA. We identified two miRNAs capable of the direct posttranscriptional expression control of CPXM2 expression in rat cardiomyocytes. This novel data may help to shed more light on the-so far-widely unexplored expression control of CPXM2 and its potential role in LVH.


Assuntos
Carboxipeptidases/genética , Hipertrofia Ventricular Esquerda/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica/genética , Hipertensão/genética , Miócitos Cardíacos/patologia , RNA Mensageiro/genética , Ratos
19.
Aging (Albany NY) ; 14(3): 1508-1528, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35157609

RESUMO

Left ventricular hypertrophy (LVH) is a pivotal manifestation of hypertensive organ damage associated with an increased cardiovascular risk. However, early diagnostic biomarkers for assessing LVH in patients with hypertension (HT) remain indefinite. Here, multiple bioinformatics tools combined with an experimental verification strategy were used to identify blood biomarkers for hypertensive LVH. GSE74144 mRNA expression profiles were downloaded from the Gene Expression Omnibus (GEO) database to screen candidate biomarkers, which were used to perform weighted gene co-expression network analysis (WGCNA) and establish the least absolute shrinkage and selection operator (LASSO) regression model, combined with support vector machine-recursive feature elimination (SVM-RFE) algorithms. Finally, the potential blood biomarkers were verified in an animal model. A total of 142 hub genes in peripheral blood leukocytes were identified between HT with LVH and HT without LVH, which were mainly involved in the ATP metabolic process, oxidative phosphorylation, and mitochondrial structure and function. Notably, lysosomal associated transmembrane protein 5 (LAPTM5) was identified as the potential diagnostic marker of hypertensive LVH, which showed strong correlations with diverse marker sets of reactive oxygen species (ROS) and autophagy. RT-PCR validation of blood samples and cardiac magnetic resonance imaging (CMRI) showed that the expression of LAPTM5 was significantly higher in the HT with LVH model than in normal controls, LAPTM5 demonstrated a positive association with the left ventricle wall thickness as well as electrocardiogram (ECG) parameters widths of the QRS complex and QTc interval. In conclusion, LAPTM5 may be a potential biomarker for the diagnosis of LVH in patients with HT, and it can provide new insights for future studies on the occurrence and the molecular mechanisms of hypertensive LVH.


Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Proteínas de Membrana , Biomarcadores/metabolismo , Biologia Computacional , Ventrículos do Coração , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/patologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
20.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055131

RESUMO

Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder characterized by unexplained left ventricular hypertrophy with or without left ventricular outflow tract (LVOT) obstruction. Single-nuclei RNA-sequencing (snRNA-seq) of both obstructive and nonobstructive HCM patient samples has revealed alterations in communication between various cell types, but no direct and integrated comparison between the two HCM phenotypes has been reported. We performed a bioinformatic analysis of HCM snRNA-seq datasets from obstructive and nonobstructive patient samples to identify differentially expressed genes and distinctive patterns of intercellular communication. Differential gene expression analysis revealed 37 differentially expressed genes, predominantly in cardiomyocytes but also in other cell types, relevant to aging, muscle contraction, cell motility, and the extracellular matrix. Intercellular communication was generally reduced in HCM, affecting the extracellular matrix, growth factor binding, integrin binding, PDGF binding, and SMAD binding, but with increases in adenylate cyclase binding, calcium channel inhibitor activity, and serine-threonine kinase activity in nonobstructive HCM. Increases in neuron to leukocyte and dendritic cell communication, in fibroblast to leukocyte and dendritic cell communication, and in endothelial cell communication to other cell types, largely through changes in the expression of integrin-ß1 and its cognate ligands, were also noted. These findings indicate both common and distinct physiological mechanisms affecting the pathogenesis of obstructive and nonobstructive HCM and provide opportunities for the personalized management of different HCM phenotypes.


Assuntos
Cardiomiopatia Hipertrófica/genética , Redes Reguladoras de Genes , Hipertrofia Ventricular Esquerda/genética , Análise de Sequência de RNA/métodos , Obstrução do Fluxo Ventricular Externo/genética , Comunicação Celular , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Masculino , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...